翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

conformal radius : ウィキペディア英語版
conformal radius
In mathematics, the conformal radius is a way to measure the size of a simply connected planar domain ''D'' viewed from a point ''z'' in it. As opposed to notions using Euclidean distance (say, the radius of the largest inscribed disk with center ''z''), this notion is well-suited to use in complex analysis, in particular in conformal maps and conformal geometry.
A closely related notion is the transfinite diameter or (logarithmic) capacity of a compact simply connected set ''D'', which can be considered as the inverse of the conformal radius of the complement ''E'' = ''Dc'' viewed from infinity.
==Definition==
Given a simply connected domain ''D'' ⊂ C, and a point ''z'' ∈ ''D'', by the Riemann mapping theorem there exists a unique conformal map ''f'' : ''D'' → D onto the unit disk (usually referred to as the uniformizing map) with ''f''(''z'') = 0 ∈ D and ''f''′(''z'') ∈ R+. The conformal radius of ''D'' from ''z'' is then defined as
: \mathrm(z,D) := \frac\,.
The simplest example is that the conformal radius of the disk of radius ''r'' viewed from its center is also ''r'', shown by the uniformizing map ''x'' ↦ ''x''/''r''. See below for more examples.
One reason for the usefulness of this notion is that it behaves well under conformal maps: if φ : ''D'' → ''D''′ is a conformal bijection and ''z'' in ''D'', then \mathrm(\varphi(z),D') = |\varphi'(z)|\, \mathrm(z,D).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「conformal radius」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.